Design and Implementation of an Atrial Fibrillation Detection Algorithm on the ARM Cortex-M4 Microcontroller

Author:

Żyliński Marek1ORCID,Nassibi Amir1ORCID,Mandic Danilo P.1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

At present, a medium-level microcontroller is capable of performing edge computing and can handle the computation of neural network kernel functions. This makes it possible to implement a complete end-to-end solution incorporating signal acquisition, digital signal processing, and machine learning for the classification of cardiac arrhythmias on a small wearable device. In this work, we describe the design and implementation of several classifiers for atrial fibrillation detection on a general-purpose ARM Cortex-M4 microcontroller. We used the CMSIS-DSP library, which supports Naïve Bayes and Support Vector Machine classifiers, with different kernel functions. We also developed Python scripts to automatically transfer the Python model (trained in Scikit-learn) to the C environment. To train and evaluate the models, we used part of the data from the PhysioNet/Computing in Cardiology Challenge 2020 and performed simple classification of atrial fibrillation based on heart-rate irregularity. The performance of the classifiers was tested on a general-purpose ARM Cortex-M4 microcontroller (STM32WB55RG). Our study reveals that among the tested classifiers, the SVM classifier with RBF kernel function achieves the highest accuracy of 96.9%, sensitivity of 98.4%, and specificity of 95.8%. The execution time of this classifier was 720 μs per recording. We also discuss the advantages of moving computing tasks to edge devices, including increased power efficiency of the system, improved patient data privacy and security, and reduced overall system operation costs. In addition, we highlight a problem with false-positive detection and unclear significance of device-detected atrial fibrillation.

Funder

USSOCOM

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3