Analysis and Optimization of Driveline Bushing for Lateral Ride Vibration under Shock Excitation

Author:

Guo PengORCID,Li Jinlu,Lin ZefengORCID,Lin JieweiORCID

Abstract

Ride comfort is increasingly important for automobile companies due to the increasing concern of the demands of customers. Response to shock at low speed, such as single or consecutive pulse excitations from humps, are one of the greatest assessing indices of vehicle ride related to the ride comfort. This paper aims to study the effect of driveline bushing on ride vibration when the vehicle experiences shock excitation and to improve the ride quality by optimizing the bushing parameters. A vehicle level multibody dynamic model with a differential-subframe subsystem is developed and calibrated against field test data. The sensitivities of the bushing stiffness and damping coefficients are analyzed and the most influential bushing parameters on the seat rail vibration are identified. The relationship between the bushing parameters and the ride vibration is developed by a 5-level response surface design. The fitted response functions are validated and adopted as the optimization objectives. The optimized results, including the acceleration, the running r.m.s. acceleration, the jerk, the running r.m.s. jerk, the VDV and the comfort, are compared with those of the baseline vehicle. Results show that the optimized bushings significantly decrease the vibration at the driver and the rear passenger seats by approximately 50% in the lateral direction. A considerable improvement has been achieved in ride comfort that the weighted vibration at seats is reduced to a level below the median perception threshold of human being in the lateral direction.

Funder

National Natural Science Foundation of China

Tianjin Municipal Science and Technology Bureau

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3