Influence of Silver Nanoparticles, Laser Light and Electromagnetic Stimulation of Seeds on Germination Rate and Photosynthetic Parameters in Pumpkin (Cucurbita pepo L.) Leaves

Author:

Dziwulska-Hunek AgataORCID,Kachel MagdalenaORCID,Gagoś MariuszORCID,Szymanek MariuszORCID

Abstract

The study aimed to determine the impact of laser light (L), magnetic stimulation (p) and silver nanocolloid (AgNC) on pumpkin seeds on the germination rate and content of photosynthetic pigments as well as the efficiency of photosynthesis and greenness index in the plant’s development stages. Seeds germinated after the use of various combinations of different refining techniques. The best results were observed for the alternating magnetic field, where the germination energy increased significantly by 20% relative to the control. A similar effect was observed in terms of germination capacity which increased by 4%. A decrease in terms of emergence rate was observed in all study groups. Leaves grown from seeds soaked in nanocolloidal silver on platters were characterised by a significantly higher content of chlorophyll a and b by, respectively, 53 and 11%, as well as 79% higher carotenoid content. The leaves of potted plants contained 42 and 43% more chlorophyll a in groups p and AgNC. In addition, 66 and 81% more carotenoids in groups L and p. At the stage of the onset of flowering of pumpkin, an improvement in terms of photosynthetic efficiency and greenness index was observed in all study groups. The highest improvement was recorded for seeds soaked in silver and reached 23% (intensity of photosynthesis) and 11% (greenness index SPAD).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3