Effect of Silver Nanoparticles Synthesized by ‘Green’ Methods on the Growth of in vitro Culture of Betula pendula L. whole Plants

Author:

Przhevalskaya Darya A.,Bandarenka Uladzislau Y.,Shashko Antonina Y.,Charnysh Maryia A.,Smolich Ihar I.,Sokolik Anatoliy I.,Konstantinov Andrei V.,Padutov Vladimir E.,Demidchik Vadim V.

Abstract

Background: Metal nanoparticles, such as silver nanoparticles obtained by “green” nanosynthesis, have been increasingly used in research and practice in recent years due to their high biocompatibility and low toxicity. It is important to understand how green nanoparticles have regulatory effects on all groups of living systems, including plants. One of the key questions is how silver nanoparticles obtained by green methods modify plant growth in various cultivation and biotechnological systems, such as in vitro culture. Objective: The aim of this study was to establish how in vitro culture of birch plants (Betula pendula Roth) reacts to different levels of silver nanoparticles synthesized by green methods (based on plant extracts) and chemical approaches. Methods: The paper examined the nodal segments of silver birch Betula pendula Roth grown on Woody Plant Medium (WPM) with the addition of silver nanoparticles (0.3-300 mg L-1). After 30 days of cultivation in an in vitro environment, the growth of shoots and roots was measured. Silver nanoparticles were synthesized using L-ascorbic acid (reducing agent) and polyvinylpyrrolidone (PVP; stabilizer), as well as with needle extract (as a reducing agent and stabilizer). Results: Chemical nanosynthesis based on PVP and L-ascorbate, as well as green nanosynthesis using extract of spruce needles made it possible to obtain spherical nanoparticles with similar physical parameters. Low levels of AgNPs (0.3-10 mg L-1) synthesized by chemical techniques (PVP and L-ascorbate) stimulated the growth of birch shoots. In this case, the maximum stimulating effect on shoot growth was found at 10 mg of L-1 AgNPs (250-300% stimulation compared to the control). Under higher levels of nanoparticles (30-300 mg L-1), the stimulating effect decreased. Concentrations over 300 mg of L-1 inhibited the growth of birch plants. Very similar effects were observed in roots. In experiments with nanoparticles synthesized using spruce needle extract, it was shown that low concentrations of AgNPs (0.3 and 1 mg L-1) did not cause a significant change in the size of birch shoots and roots. At the same time, higher levels of silver nanoparticles (3-300 mg L-1) significantly stimulated growth. Conclusion: The present study demonstrates the production of stable silver nanoparticles based on PVP and L-ascorbic acid, as well as an extract of Betula pendula needles. The resulting nanoparticles have a uniform shape and distribution. The presence of AgNP (1-300 mg L-1) in the nutrient media has a stimulating effect on Betula pendula shoot and root growth.

Publisher

Bentham Science Publishers Ltd.

Subject

Soil Science,Agronomy and Crop Science,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3