Abstract
We demonstrate a simple but efficient way to optimize and improve the properties of laser-wakefield-accelerated electron beams (e beams) based on a controllable shock-induced density down-ramp injection that is achieved with an inserted tunable shock wave. The e beams are tunable from 400 to 800 MeV with charge ranges from 5 to 180 pC. e beams with high reproducibility (of ~95% in consecutive 100 shots) were produced in elaborate experiments with an average root- mean-square energy spread of 0.9% and an average divergence of 0.3 mrad. Three-dimensional particle-in-cell (PIC) simulations were also performed to accordingly verify and uncover the process of the injection and the acceleration. These tunable e beams will facilitate practical applications for advanced accelerator beam sources.
Funder
National Natural Science Foundation of China
National Key Laboratory of Shock Wave and Detonation Physics
Natural Science Foundation of Shanghai
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献