Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials

Author:

Sorrentino Andrea,Simonelli Laura,Kazzazi Arefehsadat,Laszczynski Nina,Birrozzi Agnese,Mullaliu AngeloORCID,Pereiro EvaORCID,Passerini StefanoORCID,Giorgetti MarcoORCID,Tonti DinoORCID

Abstract

Energy-dependent full field transmission soft X-ray microscopy (TXM) is able to give a full picture at the nanometer scale of the chemical state and spatial distribution of oxygen and other elements relevant for battery materials, providing pixel-by-pixel absorption spectrum. We show different methods to localize chemical inhomogeneities in Li1.2Mn0.56Ni0.16Co0.08O2 particles with and without VOx coating extracted from electrodes at different states of charge. Considering the 3d(Mn,Ni)-2p(O) hybridization, it has been possible to discriminate the chemical state of Mn and Ni in addition to the one of O. Different oxidation states correspond to specific features in the O-K spectra. To localize sample regions with specific compositions we apply two different methods. In the first, the pixel-by-pixel ratios of images collected at different key energies clearly highlight local inhomogeneities. In the second, introduced here for the first time, we directly correlate corresponding pixels of the two images on a xy scatter plot that we call phase map, where we can visualize the distributions as function of thickness as well as absorption artifacts. We can select groups of pixels, and then map regions with similar spectral features. Core-shell distributions of composition are clearly shown in these samples. The coating appears in part to frustrate some of the usual chemical evolution. In addition, we could directly observe several further aspects, such as: distribution of conducting carbon; inhomogeneous state of charge within the electrode; molecular oxygen profiles within a particle. The latter suggests a surface loss with respect to the bulk but an accumulation layer at intermediate depth that could be assigned to retained O2.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3