Revealing the degradation pathways of layered Li-rich oxide cathodes

Author:

He Xin1ORCID,Liu Zhimeng2,Zeng Yuqiang3ORCID,Tan Junyang4,Wang Hailong2,Zhu Yudong5ORCID,Geng Xin2,Guttmann Peter6ORCID,Hou Xu7,Yang Yang8,Xu Yunkai9,Cloetens Peter10ORCID,Wei Yinping4,Lu Jun9ORCID,Li Jie11,Liu Bilu12ORCID,Winter Martin13ORCID,Kostecki Robert14ORCID,Lin Yuanjing15ORCID

Affiliation:

1. Sichuan Univrsity

2. Sichuan University

3. Lawrence Berkeley Lab

4. Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School

5. Hong Kong University of Science and Technology

6. Helmholtz-Zentrum Berlin f�r Materialien und Energie

7. Forschungszentrum Juelich GmbH, and MEET Battery Research Center

8. Brookhaven National Laboratory

9. Zhejiang University

10. European Synchrotron Radiation Facility

11. Politecnico di Milano

12. Tsinghua University

13. Forschungszentrum Jülich

14. LBNL

15. Southern University of Science and Technology

Abstract

Abstract Layered Li-rich transition metal oxides (LRTMO) are one of the most promising cathode candidates for high energy density lithium batteries due to the redox contributions from transition metal (TM) cations and oxygen (O) anion. However, their practical application is hindered by gradual capacity fading and voltage decay. Although oxygen loss and phase transformation have been widely recognized as primary factors for these drawbacks, the structural deterioration and chemical rearrangement of LRTMO during battery operations, and the kinetic and thermodynamic evolution, remain unclear. Herein, we comprehensively investigate the morphological, structural, and oxidation state evolutions from the individual atoms to secondary particles. By means of nano- to micro-scale characterizations, distinct structural changing pathways associated with different intra-particle heterogeneous reactions are identified. Substantial O-defects are formed through the particle by slow electrochemical activation, accompanied with oxygen release triggering progressive phase transformation on surface and formation of nano-voids in bulk. The ultra-fast heterogeneous Li- (de)intercalation often leads to O-distortion dominated lattice displacement, TM-ions dissolution, and Li-sites variation. These inhomogeneous and irreversible structural changes are responsible for first-cycle Coulombic inefficiency, and ongoing particle cracking and expansion in the following cycles.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3