Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method

Author:

Hou ShuaiORCID,Li Yujiao,Bai Meijuan,Sun Mengyue,Liu WeiweiORCID,Wang Chao,Tetik Halil,Lin Dong

Abstract

The comprehensive properties of high-entropy alloys (HEAs) are highly-dependent on their phases. Although a large number of machine learning (ML) algorithms has been successfully applied to the phase prediction of HEAs, the accuracies among different ML algorithms based on the same dataset vary significantly. Therefore, selection of an efficient ML algorithm would significantly reduce the number and cost of the experiments. In this work, phase prediction of HEAs (PPH) is proposed by integrating criterion and machine learning recommendation method (MLRM). First, a meta-knowledge table based on characteristics of HEAs and performance of candidate algorithms is established, and meta-learning based on the meta-knowledge table is adopted to recommend an algorithm with desirable accuracy. Secondly, an MLRM based on improved meta-learning is engineered to recommend a more desirable algorithm for phase prediction. Finally, considering poor interpretability and generalization of single ML algorithms, a PPH combining the advantages of MLRM and criterion is proposed to improve the accuracy of phase prediction. The PPH is validated by 902 samples from 12 datasets, including 405 quinary HEAs, 359 senary HEAs, and 138 septenary HEAs. The experimental results shows that the PPH achieves performance than the traditional meta-learning method. The average prediction accuracy of PPH in all, quinary, senary, and septenary HEAs is 91.6%, 94.3%, 93.1%, and 95.8%, respectively.

Funder

the National Science Foundation under Award

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3