Author:
Liu Li,Paudel Ramesh,Liu Yong,Zhao Xiao-Liang,Zhu Jing-Chuan
Abstract
The fundamental challenge for creating the crystal structure model used in a multi-principle element design is the ideal combination of atom components, structural stability, and deformation behavior. However, most of the multi-principle element alloys contain expensive metallic and rare earth elements, which could limit their applicability. Here, a novel design of low-cost AlCrTiFeNi multi-principle element alloy is presented to study the relationship of structure, deformation behavior, and micro-mechanism. This structured prediction of single-phase AlCrTiFeNi by the atomic-size difference, mixing enthalpy ΔHmix and valence electron concentration (VEC), indicate that we can choose the bcc-structured solid solution to design the AlCrTiFeNi multi-principle element alloy. Structural stability prediction by density functional theory calculations (DFT) of single phases has verified that the most advantageous atom occupancy position is (FeCrNi)(AlFeTi). The experimental results showed that the structure of AlCrTiFeNi multi-principle element alloy is bcc1 + bcc2 + L12 phases, which we propose as the fundamental reason for the high strength. Our findings provide a new route by which to design and obtain multi-principle element alloys with targeted properties based on the theoretical predictions, first-principles calculations, and experimental verification.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献