The Effects of Extreme Heat Adaptation Strategies under Different Climate Change Mitigation Scenarios in Seoul, Korea

Author:

Park Chae YeonORCID,Lee Dong KunORCID,Hyun Jung HeeORCID

Abstract

The impacts of extreme heat in Seoul, Korea, are expected to increase in frequency and magnitude in response to global warming, necessitating certain adaptation strategies. However, there is a lack of knowledge of adaptation strategies that would be able to reduce the impacts of extreme heat to cope with an uncertain future, especially on the local scale. In this study, we aimed to determine the effect of adaptation strategies to reduce the mortality risk under two climate change mitigation scenarios, using Representative Concentration Pathways (RCP) 2.6 and 8.5. We selected four street-level adaptation strategies: Green walls, sidewalk greenways, reduced-albedo sidewalks and street trees. As an extreme heat assessment criterion, we used a pedestrian mean radiant temperature threshold, which was strongly related to heat mortality. The results, projected to the 2050s, showed that green walls, greenways and reduced-albedo sidewalks could adequately reduce the extreme heat impacts under RCP2.6; however, only street trees could reduce the extreme heat impacts under RCP8.5 in the 2050s. This implies that required adaptation strategies can vary depending on the targeted scenario. This study was conducted using one street in Seoul, but the methodology can be expanded to include other adaptation strategies, and applied to various locations to help stakeholders decide on effective adaptation options and make local climate change adaptation plans.

Funder

Korea Environmental Industry and Technology Institute

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3