Circadian Clock Component BMAL1 in the Paraventricular Nucleus Regulates Glucose Metabolism

Author:

Nakata Masanori,Kumari Parmila,Kita Rika,Katsui Nanako,Takeuchi Yuriko,Kawaguchi Tomoki,Yamazaki Toshiya,Zhang Boyang,Shimba Shigeki,Yada Toshihiko

Abstract

It is suggested that clock genes link the circadian rhythm to glucose and lipid metabolism. In this study, we explored the role of the clock gene Bmal1 in the hypothalamic paraventricular nucleus (PVN) in glucose metabolism. The Sim1-Cre-mediated deletion of Bmal1 markedly reduced insulin secretion, resulting in impaired glucose tolerance. The pancreatic islets’ responses to glucose, sulfonylureas (SUs) and arginine vasopressin (AVP) were well maintained. To specify the PVN neuron subpopulation targeted by Bmal1, the expression of neuropeptides was examined. In these knockout (KO) mice, the mRNA expression of Avp in the PVN was selectively decreased, and the plasma AVP concentration was also decreased. However, fasting suppressed Avp expression in both KO and Cre mice. These results demonstrate that PVN BMAL1 maintains Avp expression in the PVN and release to the circulation, possibly providing islet β-cells with more AVP. This action helps enhance insulin release and, consequently, glucose tolerance. In contrast, the circadian variation of Avp expression is regulated by feeding, but not by PVN BMAL1.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3