Reactional Processes on Osmium–Polymeric Membranes for 5–Nitrobenzimidazole Reduction

Author:

Nechifor Aurelia Cristina,Goran Alexandru,Grosu Vlad-AlexandruORCID,Pîrțac Andreia,Albu Paul ConstantinORCID,Oprea OvidiuORCID,Grosu Alexandra RalucaORCID,Pașcu Dumitru,Păncescu Florentina MihaelaORCID,Nechifor GheorgheORCID,Tanczos Szidonia-Katalin,Bungău Simona GabrielaORCID

Abstract

Membranes are associated with the efficient processes of separation, concentration and purification, but a very important aspect of them is the realization of a reaction process simultaneously with the separation process. From a practical point of view, chemical reactions have been introduced in most membrane systems: with on-liquid membranes, with inorganic membranes or with polymeric and/or composite membranes. This paper presents the obtaining of polymeric membranes containing metallic osmium obtained in situ. Cellulose acetate (CA), polysulfone (PSf) and polypropylene hollow fiber membranes (PPM) were used as support polymer membranes. The metallic osmium is obtained directly onto the considered membranes using a solution of osmium tetroxide (OsO4), dissolved in tert–butyl alcohol (t–Bu–OH) by reduction with molecular hydrogen. The composite osmium–polymer (Os–P)-obtained membranes were characterized in terms of the morphological and structural points of view: scanning electron microscopy (SEM), high-resolution SEM (HR–SEM), energy-dispersive spectroscopy analysis (EDAX), Fourier Transform Infra-Red (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The process performance was tested for reduction of 5–nitrobenzimidazole to 5–aminobenzimidazole with molecular hydrogen. The paper presents the main aspects of the possible mechanism of transformation of 5–nitrobenzimidazole to 5–aminobenzimidazole with hydrogen gas in the reaction system with osmium–polymer membrane (Os–P).

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3