Green Synthesis of Hydrogel-Based Adsorbent Material for the Effective Removal of Diclofenac Sodium from Wastewater

Author:

Chelu Mariana1ORCID,Popa Monica1,Calderon Moreno Jose1,Leonties Anca Ruxandra1ORCID,Ozon Emma Adriana2,Pandele Cusu Jeanina1,Surdu Vasile Adrian3ORCID,Aricov Ludmila1ORCID,Musuc Adina Magdalena1ORCID

Affiliation:

1. “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania

2. Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania

3. Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania

Abstract

The removal of pharmaceutical contaminants from wastewater has gained considerable attention in recent years, particularly in the advancements of hydrogel-based adsorbents as a green solution for their ease of use, ease of modification, biodegradability, non-toxicity, environmental friendliness, and cost-effectiveness. This study focuses on the design of an efficient adsorbent hydrogel based on 1% chitosan, 40% polyethylene glycol 4000 (PEG4000), and 4% xanthan gum (referred to as CPX) for the removal of diclofenac sodium (DCF) from water. The interaction between positively charged chitosan and negatively charged xanthan gum and PEG4000 leads to strengthening of the hydrogel structure. The obtained CPX hydrogel, prepared by a green, simple, easy, low-cost, and ecological method, has a higher viscosity due to the three-dimensional polymer network and mechanical stability. The physical, chemical, rheological, and pharmacotechnical parameters of the synthesized hydrogel were determined. Swelling analysis demonstrated that the new synthetized hydrogel is not pH-dependent. The obtained adsorbent hydrogel reached the adsorption capacity (172.41 mg/g) at the highest adsorbent amount (200 mg) after 350 min. In addition, the adsorption kinetics were calculated using a pseudo first-order model and Langmuir and Freundlich isotherm parameters. The results demonstrate that CPX hydrogel can be used as an efficient option to remove DCF as a pharmaceutical contaminant from wastewater.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3