Dealcoholization of Unfiltered and Filtered Lager Beer by Hollow Fiber Polyelectrolyte Multilayer Nanofiltration Membranes—The Effect of Ion Rejection

Author:

Bóna Áron1,Varga Áron2ORCID,Galambos Ildikó1,Nemestóthy Nándor3ORCID

Affiliation:

1. Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8, H-8800 Nagykanizsa, Hungary

2. Department of Research and Development, Pécsi Brewery, Alkotmány utca 94, H-7624 Pécs, Hungary

3. Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary

Abstract

Membrane-based beverage dealcoholization is a successful process for producing low- and non-alcoholic beer and represents a fast-growing industry. Polyamide NF and RO membranes are commonly applied for this process. Polyelectrolyte multilayer (PEM) NF membranes are emerging as industrially relevant species, and their unique properties (usually hollow fiber geometry, high and tunable selectivity, low fouling) underlines the importance of testing them in the food industry as well. To test PEM NF membranes for beer dealcoholization at a small pilot scale, we dealcoholized filtered and unfiltered lager beer with the tightest available commercial polyelectrolyte multilayer NF membrane (NX Filtration dNF40), which has a MWCO = 400 Da, which is quite high for these purposes. Dealcoholization is possible with a reasonable flux (10 L/m2h) at low pressures (5–8.6 bar) with a real extract loss of 15–18% and an alcohol passage of ~100%. Inorganic salt passage is high (which is typical for PEM NF membranes), which greatly affected beer flavor. During the dealcoholization process, the membrane underwent changes which substantially increased its salt rejection values (MgSO4 passage decreased fourfold) while permeance loss was minimal (less than 10%). According to our sensory evaluation, the process yielded an acceptable tasting beer which could be greatly enhanced by the addition of the lost salts and glycerol.

Funder

Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund

2021 Thematic Excellence Programme funding scheme

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3