Effects of Impurities from Sugar Excipient on Filtrate Flux during Ultrafiltration and Diafiltration Process

Author:

Lee JieunORCID,Na JiwonORCID,Baek Youngbin

Abstract

Sugar excipients such as sucrose and maltose are widely used for biopharmaceutical formulation to improve protein stability and to ensure isotonicity for administration. However, according to recent literature, pharmaceutical-grade sucrose contained nanoparticulate impurities (NPIs) that result in protein aggregation and degradation. The objective of this study was to evaluate the filtrate flux behavior of sugar solution during ultrafiltration (UF) and diafiltration (DF). Filtrate flux data were obtained using either a tangential flow filtration (TFF) system for DF experiments or a normal flow filtration system for UF experiments. In diafiltration experiments, which were performed using 7 g/L of human immunoglobulin G in a 20 mM histidine buffer with the 100 mM sucrose or maltose, the filtrate flux with sucrose solution decreased significantly. In contrast, the one with maltose solution was in good correspondence with the calculated filtrate flux accounting for the effects of solution viscosity. This large decline in the flux was also observed during UF experiments, in which the presence of NPIs was identified by dynamic light scattering analysis and by capturing an SEM image of the membrane surface after filtration. In addition, highly purified sucrose resulted in a much lower flux decline in TFF in the absence of NPIs. These results provide important insights into the factors governing the optimization of the UF/DF process using appropriate excipients for biopharmaceutical formulation.

Funder

Sungshin Women’s University

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3