Graphene Oxide–Polyphenylsulfone Nanocomposite Beads for Paracetamol Removal from Aqueous Solution

Author:

Alhoshan Mansour12,Shukla Arun Kumar2ORCID,Alam Javed2ORCID,Hamid Ali Awadh1

Affiliation:

1. Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia

2. King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

This study introduces a promising and practical method for the removal of paracetamol from aqueous environments, employing graphene oxide–polymer nanocomposite beads. The approach involves the utilization of a straightforward and facile phase inversion method, offering a convenient and efficient one-step process for the creation of adsorbent beads by integrating polymers and graphene oxide (GO). The synthesized nanocomposite beads are tailored for the removal of paracetamol from simulated wastewater in batch systems. Extensive characterization techniques including XPS, FTIR, SEM, TGA, and zeta potential analysis are employed to scrutinize the chemical properties and structural attributes of the prepared beads. The investigation explores the impact of critical parameters such as adsorbent dosage, adsorption duration, initial paracetamol concentration, and solution pH on the adsorption process. These nanocomposite beads exhibit an exceptional paracetamol removal efficiency, achieving up to 99% removal. This research not only contributes to the advancement of efficient and sustainable adsorbent materials for pollutant removal but also underscores their potential for environmentally friendly and cost-effective solutions in the domain of wastewater treatment.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3