Removal of Acetaminophen Drug from Wastewater by Fe3O4 and ZSM-5 Materials

Author:

Pirvu Florinela12,Covaliu-Mierlă Cristina Ileana1,Catrina Gina Alina2

Affiliation:

1. Faculty of Biotechnical Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania

2. National Research and Development Institute for Industrial Ecology ECOIND, 71-73, Drumul Podu Dambovitei Street, 060652 Bucharest, Romania

Abstract

Adsorption of toxic compounds from water using zeolites and magnetite was developed due to the various advantages of their applicability. In the last twenty years, the use of zeolite-based compositions in the form of zeolite/inorganic or zeolite/polymer and magnetite has been accelerated for the adsorption of emergent compounds from water sources. The main adsorption mechanisms using zeolite and magnetite nanomaterials are high surface adsorption, ion exchange capacity and electrostatic interaction. This paper shows the capacity of Fe3O4 and ZSM-5 nanomaterials of adsorbing the emerging pollutant acetaminophen (paracetamol) during the treatment of wastewater. The efficiencies of the Fe3O4 and ZSM-5 in the wastewater process were systematically investigated using adsorption kinetics. During the study, the concentration of acetaminophen in the wastewater was varied from 50 to 280 mg/L, and the maximum Fe3O4 adsorption capacity increased from 25.3 to 68.9 mg/g. The adsorption capacity of each studied material was performed for three pH values (4, 6, 8) of the wastewater. Langmuir and Freundlich isotherm models were used to characterize acetaminophen adsorption on Fe3O4 and ZSM-5 materials. The highest efficiencies in the treatment of wastewater were obtained at a pH value of 6. Fe3O4 nanomaterial presented a higher removal efficiency (84.6%) compared to ZSM-5 nanomaterial (75.4%). The results of the experiments show that both materials have a potential to be used as an effective adsorbents for the removal of acetaminophen from wastewater.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference30 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3