Removal of Excess Alkali from Sodium Naphthenate Solution by Electrodialysis Using Bilayer Membranes for Subsequent Conversion to Naphthenic Acids

Author:

Achoh Aslan,Petriev IlyaORCID,Melnikov StanislavORCID

Abstract

The processing of solutions containing sodium salts of naphthenic acids (sodium naphthenate) is in high demand due to the high value of the latter. Such solutions usually include an excessive amount of alkali and a pH of around 13. Bipolar electrodialysis can convert sodium naphthenates into naphthenic acids; however, until pH 6.5, the naphthenic acids are not released from the solution. The primary process leading to a decrease in pH is the removal of excess alkali that implies that some part of electricity is wasted. In this work, we propose a technique for the surface modification of anion-exchange membranes with sulfonated polyetheretherketone, with the formation of bilayer membranes that are resistant to poisoning by the naphthenate anions. We investigated the electrochemical properties of the obtained membranes and their efficiency in a laboratory electrodialyzer. Modified membranes have better electrical conductivity, a high current efficiency for hydroxyl ions, and a low tendency to poisoning than the commercial membrane MA-41. We propose that the primary current carrier is the hydroxyl ion in both electromembrane systems with the MA-41 and MA-41M membranes. At the same time, for the modified MA-41M membrane, the concentration of hydroxyl ions in the anion-exchanger phase is higher than in the MA-41 membrane, which leads to almost five-fold higher values of the specific permeability coefficient. The MA-41M membranes are resistant to poisoning by naphthenic acids anions during at least six cycles of processing of the sodium naphthenate solution.

Funder

Kuban Science Foundation

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference34 articles.

1. Treatment of industrial oily wastewater by advanced technologies: a review

2. Encyclopedia of Chemical Technology;Othmer,2007

3. Naphtenic Acid;Brient,1991

4. Naphthenic Acids—Corrosion in Distillation Units;Speight,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3