Mathematical Modeling of the Selective Transport of Singly Charged Ions Through Multilayer Composite Ion-Exchange Membrane during Electrodialysis

Author:

Gorobchenko A. D.,Gil V. V.,Nikonenko V. V.,Sharafan M. V.

Abstract

Abstract The deposition of several alternating anion- and cation-exchange surface layers (layer-by-layer method) is a promising technique for the modification of ion-exchange membranes, which makes it possible to essentially increase their selectivity to singly charged ions. This paper presents a one-dimensional model, which is based on the Nernst–Planck–Poisson equations and describes the competitive transfer of singly and doubly charged ions through a multilayer composite ion-exchange membrane. It has been revealed for the first time that, as in the earlier studied case of a bilayer membrane, the dependence of the specific permselectivity coefficient (P1/2) of a multilayer membrane on the electrical current density passes through a maximum $$\left( {P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}} \right).$$ It has been shown that an increase in the number of nanosized modification bilayers n leads to the growth of $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }},$$ but the flux of a preferably transferred ion decreases in this case. It has been established that $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}$$ is attained at underlimiting current densities and relatively low potential drop. The simulated dependences $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}$$(n) qualitatively agree with the known literature experimental and theoretical results.

Publisher

Pleiades Publishing Ltd

Subject

Materials Science (miscellaneous),Chemical Engineering (miscellaneous),Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3