Effective H2 Separation through Electroless Pore-Plated Pd Membranes Containing Graphite Lead Barriers

Author:

Martinez-Diaz DavidORCID,Sanz RaúlORCID,Carrero Alicia,Calles José AntonioORCID,Alique DavidORCID

Abstract

Hydrogen promotion as a clean energy vector could provide an efficient strategy for realizing real decarbonization of the current energy system. Purification steps are usually required in most H2-production processes, providing the use of Pd-based membranes, particularly those supported on porous stainless steel (PSS), important advantages against other alternatives. In this work, new composite membranes were prepared by modifying PSS supports with graphite, as an intermediate layer, before incorporating a palladium film by electroless pore-plating. Fully dense Pd layers were reached, with an estimated thickness of around 17 μm. Permeation measurements were carried out in two different modes: H2 permeation from the inner to the outer side of the membrane (in–out) and in the opposite way (out–in). H2 permeances between 3.24 × 10−4 and 4.33 × 10−4 mol m−2 s−1 Pa−0.5 with αH2/N2 ≥ 10,000 were reached at 350–450 °C when permeating from the outer to the inner surface. Despite a general linear trend between permeating H2 fluxes and pressures, the predicted intercept in (0,0) by the Sieverts’ law was missed due to the partial Pd infiltration inside the pores. H2-permeances progressively decreased up to around 33% for binary H2–N2 mixtures containing 40 vol% N2 due to concentration–polarization phenomena. Finally, the good performance of these membranes was maintained after reversing the direction of the permeate flux. This fact practically demonstrates an adequate mechanical resistance despite generating tensile stress on the Pd layer during operation, which is not accomplished in other Pd membranes.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3