Recent Advancements in Pd-Based Membranes for Hydrogen Separation

Author:

Cerone Nadia1ORCID,Zito Giuseppe Domenico2ORCID,Florio Carmine1,Fabbiano Laura2ORCID,Zimbardi Francesco1ORCID

Affiliation:

1. Energy Technologies and Renewable Sources Department, ENEA, ss Ionica 106, 75026 Rotondella, Italy

2. Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy

Abstract

The use of hydrogen is pivotal for the energy and industrial transition in order to mitigate the effects of climate change. As technologies like fuel cells, e-fuels, and the semiconductor industry increasingly demand pure hydrogen, the development of efficient separation methods is crucial. While traditional methods such as pressure-swing adsorption are common, palladium (Pd)-based membranes are a promising alternative due to their energetic efficiency. This review summarizes the recent advances in Pd-based membranes for hydrogen separation over the last six years. It provides a theoretical overview of hydrogen permeation through membranes and examine the characteristics of various Pd alloys adopted in membrane fabrication, discussing the advantages and disadvantages of binary and ternary alloys, for different membrane types, including self-supported and supported membranes, as well as the role of intermediate layers. Additionally, the membrane characteristics used in some recent works on self-supported and supported Pd membranes are analyzed, focusing on operational parameters like permeability, selectivity, and durability. Finally, this review emphasizes the significant progress made in enhancing membrane performance and discusses future directions for industrial applications.

Funder

Italian Ministry of the Environment and Energy Security

Publisher

MDPI AG

Reference78 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3