Field-Scale Testing of a High-Efficiency Membrane Reactor (MR)—Adsorptive Reactor (AR) Process for H2 Generation and Pre-Combustion CO2 Capture

Author:

Margull Nicholas1,Parsley Doug2,Somiari Ibubeleye1,Zhao Linghao3,Cao Mingyuan3,Koumoulis Dimitrios4,Liu Paul K. T.2,Manousiouthakis Vasilios I.1,Tsotsis Theodore T.3

Affiliation:

1. Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA 90095, USA

2. Media and Process Technology, Inc., Pittsburgh, PA 15328, USA

3. Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, University Park, Los Angeles, CA 90089, USA

4. Institute for Decarbonization and Energy Advancement, University of Kentucky, Lexington, KY 40507, USA

Abstract

The study objective was to field-validate the technical feasibility of a membrane- and adsorption-enhanced water gas shift reaction process employing a carbon molecular sieve membrane (CMSM)-based membrane reactor (MR) followed by an adsorptive reactor (AR) for pre-combustion CO2 capture. The project was carried out in two different phases. In Phase I, the field-scale experimental MR-AR system was designed and constructed, the membranes, and adsorbents were prepared, and the unit was tested with simulated syngas to validate functionality. In Phase II, the unit was installed at the test site, field-tested using real syngas, and a technoeconomic analysis (TEA) of the technology was completed. All project milestones were met. Specifically, (i) high-performance CMSMs were prepared meeting the target H2 permeance (>1 m3/(m2.hbar) and H2/CO selectivity of >80 at temperatures of up to 300 °C and pressures of up to 25 bar with a <10% performance decline over the testing period; (ii) pelletized adsorbents were prepared for use in relevant conditions (250 °C < T < 450 °C, pressures up to 25 bar) with a working capacity of >2.5 wt.% and an attrition rate of <0.2; (iii) TEA showed that the MR-AR technology met the CO2 capture goals of 95% CO2 purity at a cost of electricity (COE) 30% less than baseline approaches.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3