Turning CO2 into sustainable graphene: a comprehensive review of recent synthesis techniques and developments

Author:

Sorayani Bafqi Mohammad SajadORCID,Aliyeva NargizORCID,Baskan-Bayrak HavvaORCID,Dogan SemihORCID,Saner Okan BurcuORCID

Abstract

Abstract The synthesis of graphene through environmentally friendly and efficient methods has posed a persistent challenge, prompting extensive research in recent years to access sustainable sources and attain high quality graphene competing with the one obtained from graphite ores. Addressing this challenge becomes even more intricate when aiming to convert captured CO2 into graphene structures, encountering hurdles stemming from the inherent stability of the CO2 molecule and its steadfast transformation. Together with CO2, there is a great potential to create carbon source by using natural biomass, cellulosic plant sources and industrial wastes. This comprehensive review delves into the recent synthesis techniques and developments, exploring both direct and indirect pathways for the integration of CO2 that strive to overcome the complexities associated with transforming CO2 into graphene. The review critically analyzes CO2 capturing mechanisms designed for air, ocean, and alternative sources, outlining the progress made in harnessing captured CO2 as a feedstock for graphene production by evaluating captured CO2 values. This review consolidates the recent advancements by providing a roadmap for future research directions in the sustainable synthesis of graphene from captured CO2 in the pursuit of a greener, circular economy.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3