Exploring the Role of Drug Repurposing in Bridging the Hypoxia–Depression Connection

Author:

Correia Ana Salomé123ORCID,Marques Lara124ORCID,Cardoso Armando256ORCID,Vale Nuno124ORCID

Affiliation:

1. OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal

2. CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal

3. Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal

4. Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal

5. NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal

6. Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal

Abstract

High levels of oxidative stress are implicated in hypoxia, a physiological response to low levels of oxygen. Evidence supports a connection between this response and depression. Previous studies indicate that tryptophan hydroxylase can be negatively affected in hypoxia, impairing serotonin synthesis and downstream pathways. Some studies also hypothesize that increasing hypoxia-inducible factor-1 (HIF-1) levels may be a new therapeutic modality for depression. Hence, this study delved into the influence of hypoxia on the cellular response to drugs designed to act in depression. By the induction of hypoxia in SH-SY5Y cells through a hypoxia incubator chamber or Cobalt Chloride treatment, the effect of Mirtazapine, an antidepressant, and other drugs that interact with serotonin receptors (TCB-2, Dextromethorphan, Ketamine, Quetiapine, Scopolamine, Celecoxib, and Lamotrigine) on SH-SY5Y cellular viability and morphology was explored. The selection of drugs was initially conducted by literature search, focusing on compounds with established potential for employment in depression therapy. Subsequently, we employed in silico approaches to forecast their ability to traverse the blood–brain barrier (BBB). This step was particularly pertinent as we aimed to assess their viability for inducing potential antidepressant effects. The effect of these drugs in hypoxia under the inhibition of HIF-1 by Echinomycin was also tested. Our results revealed that all the potential repurposed drugs promoted cell viability, especially when hypoxia was chemically induced. When combined with Echinomycin, all drugs decreased cellular viability, possibly by the inability to interact with HIF-1.

Funder

FEDER—Fundo Europeu de Desenvolvimento Regional funds

Portuguese funds

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference44 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3