Comparison of the Ammonia Trapping Performance of Different Gas-Permeable Tubular Membrane System Configurations

Author:

Soto-Herranz María,Sánchez-Báscones MercedesORCID,García-González María Cruz,Martín-Ramos PabloORCID

Abstract

The technology of gas-permeable tubular membranes (GPMs) is promising in reducing ammonia emissions from livestock manure, capturing NH3 in an acidic solution, and obtaining final products suitable for valorization as fertilizers, in line with the principles of the circular economy. This study aimed to evaluate the performance of several e-PTFE membrane systems with different configurations for the recovery of NH3 released from pig slurry. Ten different configurations were tested: only a submerged membrane, only a suspended membrane in the same chamber, only a suspended membrane in an annex chamber, a submerged membrane + a suspended membrane in the same chamber, and a submerged membrane + a suspended membrane in an annex chamber, considering in each case the scenarios without and with agitation and aeration of the slurry. In all tests, sulfuric acid (1N H2SO4) was used as the NH3 capture solution, which circulated at a flow rate of 2.1 L·h−1. The results showed that NH3-N removal rates ranged from 36–39% (for systems with a single submerged or suspended membrane without agitation or aeration of the slurry) to 70–72% for submerged + suspended GPM systems with agitation and aeration. In turn, NH3-N recovery rates were found to be between 44–54% (for systems with a single membrane suspended in an annex compartment) and 88–91% (for systems based on a single submerged membrane). However, when choosing a system for farm deployment, it is essential to consider not only the capture and recovery performance of the system, but also the investment and operating costs (ranging from 9.8 to 21.2 €/kg N recovered depending on the selected configuration). The overall assessment suggests that the simplest systems, based on a single membrane, may be the most recommendable.

Funder

European Union

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3