Comparative Study of Membrane Fouling with Aeration Shear Stress in Filtration of Different Substances

Author:

Yao Weihao12,Wang Bing3,Zhang Kaisong45

Affiliation:

1. Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, China

4. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China

5. Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China

Abstract

The formation process of membrane fouling is complex and diverse, which is an important problem that needs to be overcome in membrane applications. In this paper, three foulant systems consisting of humic acid, humic acid plus Ca2+ and humic acid plus Ca2+ plus yeast were selected to compare membrane fouling processes with different aeration intensities. The aim was to establish the quantitative relationship between membrane fouling rate and shear stress, respectively, in a large-scale flat sheet MBR (FSMBR). The shear stress values at different aeration intensities were obtained using computational fluid dynamics (CFD). The membrane fouling rate during the filtration of different substances was measured by performing experiments. The comparison results showed that the membrane fouling rate varied greatly during the filtration of different substances. With the help of particle size distribution, the effect of different shear forces on floc size was further explored. Using the dual control of fouling rate and floc size, the recommended aeration intensity was 6~8 L/(m2·min).

Funder

National Key R&D Program of China

Ministry of Science and Technology, the Bureau of Frontier Sciences and Education

Bureau of International Cooperation

Chinese Academy of Sciences, the Joint Project between CAS-CSIRO

Fujian Provincial Department of Science and Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3