Insights into Gradient and Anisotropic Pore Structures of Capiox® Gas Exchange Membranes for ECMO: Theoretically Verifying SARS-CoV-2 Permeability

Author:

Fukuda MakotoORCID,Tanaka Ryo,Sadano Kazunori,Tokumine Asako,Mori TomohiroORCID,Saomoto Hitoshi,Sakai Kiyotaka

Abstract

When using the extracorporeal capillary membrane oxygenator (sample A) for ECMO treatments of COVID-19 severely ill patients, which is dominantly used in Japan and worldwide, there is a concern about the risk of SARS-CoV-2 scattering from the gas outlet port of the membrane oxygenator. Terumo has launched two types of membranes (sample A and sample B), both of which are produced by the microphase separation processes using polymethylpentene (PMP) and polypropylene (PP), respectively. However, the pore structures of these membranes and the SARS-CoV-2 permeability through the membrane wall have not been clarified. In this study, we analyzed the pore structures of these gas exchange membranes using our previous approach and verified the SARS-CoV-2 permeation through the membrane wall. Both have the unique gradient and anisotropic pore structure which gradually become denser from the inside to the outside of the membrane wall, and the inner and outer surfaces of the membrane have completely different pore structures. The pore structure of sample A is also completely different from the other membrane made by the melt-extruded stretch process. From this, the pore structure of the ECMO membrane is controlled by designing various membrane-forming processes using the appropriate materials. In sample A, water vapor permeates through the coating layer on the outer surface, but no pores that allow SARS-CoV-2 to penetrate are observed. Therefore, it is unlikely that SARS-CoV-2 permeates through the membrane wall and scatter from sample A, raising the possibility of secondary ECMO infection. These results provide new insights into the evolution of a next-generation ECMO membrane.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference33 articles.

1. Japan ECMOnethttps://www.ecmonet.jp

2. An Assessment of Aerosolization via Membranous Oxygenator and Coagulopathy in COVID-19, ELSO Webinarhttps://ecmoedblog.files.wordpress.com/2020/03/elso-webinar-slides-keibun-liu

3. Establishment of a Disaster Management-like System for COVID-19 Patients Requiring Veno-Venous Extracorporeal Membrane Oxygenation in Japan

4. SARS-CoV-2 Leakage From the Gas Outlet Port During Extracorporeal Membrane Oxygenation for COVID-19

5. Normal and abnormal trans-oxygenator pressure gradients during cardiopulmonary bypass

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3