Investigating the Sulfonated Chitosan/Polyvinylidene Fluoride-Based Proton Exchange Membrane with fSiO2 as Filler in Microbial Fuel Cells

Author:

Palanisamy Gowthami1ORCID,Muhammed Ajmal P.1ORCID,Thangarasu Sadhasivam1ORCID,Oh Tae Hwan1ORCID

Affiliation:

1. Department of Chemical Engineering, Yeungnam University, Gyeongsan 8541, Republic of Korea

Abstract

Chitosan (CS), a promising potential biopolymer with exquisite biocompatibility, economic viability, hydrophilicity, and chemical modifications, has drawn interest as an alternative material for proton exchange membrane (PEM) fabrication. However, CS in its original form exhibited low proton conductivity and mechanical stability, restricting its usage in PEM development. In this work, chitosan was functionalized (sulfonic acid (-SO3H) groups)) to enhance proton conductivity. The sulfonated chitosan (sCS) was blended with polyvinylidene fluoride (PVDF) polymer, along with the incorporation of functionalized SiO2 (–OH groups), for fabricating chitosan-based composite proton exchange membranes to enhance microbial fuel cell (MFC) performances. The results show that adding functionalized inorganic fillers (fSiO2) into the membrane enhances the mechanical, thermal, and anti-biofouling behavior. From the results, the PVDF/sCS/fSiO2 composite membrane exhibited enhanced proton conductivity 1.0644 × 10−2 S cm−1 at room temperature and increased IEC and mechanical and chemical stability. Furthermore, this study presents a revolutionary way to generate environmentally friendly natural polymer-based membrane materials for developing PEM candidates for enhanced MFC performances in generating bioelectricity and wastewater treatment.

Funder

National Research Foundation of Korea

Research Center For Natural Products and Medical Materials

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3