Functionalized GO Membranes for Efficient Separation of Acid Gases from Natural Gas: A Computational Mechanistic Understanding

Author:

Liu QuanORCID,Yang Zhonglian,Liu GongpingORCID,Sun Longlong,Xu RongORCID,Zhong JingORCID

Abstract

Membrane separation technology is applied in natural gas processing, while a high-performance membrane is highly in demand. This paper considers the bright future of functionalized graphene oxide (GO) membranes in acid gas removal from natural gas. By molecular simulations, the adsorption and diffusion behaviors of several unary gases (N2, CH4, CO2, H2S, and SO2) are explored in the 1,4-phenylenediamine-2-sulfonate (PDASA)-doped GO channels. Molecular insights show that the multilayer adsorption of acid gases evaluates well by the Redlich-Peterson model. A tiny amount of PDASA promotes the solubility coefficient of CO2 and H2S, respectively, up to 4.5 and 5.3 mmol·g−1·kPa−1, nearly 2.5 times higher than those of a pure GO membrane, which is due to the improved binding affinity, great isosteric heat, and hydrogen bonds, while N2 and CH4 only show single-layer adsorption with solubility coefficients lower than 0.002 mmol·g−1·kPa−1, and their weak adsorption is insusceptible to PDASA. Although acid gas diffusivity in GO channels is inhibited below 20 × 10−6 cm2·s−1 by PDASA, the solubility coefficient of acid gases is certainly high enough to ensure their separation efficiency. As a result, the permeabilities (P) of acid gases and their selectivities (α) over CH4 are simultaneously improved (PCO2 = 7265.5 Barrer, αCO2/CH4 = 95.7; P(H2S+CO2) = 42075.1 Barrer, αH2S/CH4 = 243.8), which outperforms most of the ever-reported membranes. This theoretical study gives a mechanistic understanding of acid gas separation and provides a unique design strategy to develop high-performance GO membranes toward efficient natural gas processing.

Funder

Anhui Provincial Natural Science Foundation

University Natural Science Research Project of Anhui Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference59 articles.

1. Inefficient and unlit natural gas flares both emit large quantities of methane;Science,2022

2. CO2 capture (including direct air capture) and natural gas desulfurization of amine-grafted hierarchical bimodal silica;Chem. Eng. J.,2021

3. Improving energy efficiency for a low-temperature CO2 separation process in natural gas processing;Energy,2020

4. Desulfurization of natural gas condensate using polyethylene glycol and water intercalated activated γ-bauxite;J. Clean. Prod.,2022

5. Molecular Insights into the Nucleation and Growth of CH4 and CO2 Mixed Hydrates from Microsecond Simulations;J. Phys. Chem. C,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3