Graphene in Polymeric Nanocomposite Membranes—Current State and Progress

Author:

Kausar Ayesha123ORCID,Ahmad Ishaq123,Zhao Tingkai14,Aldaghri O.5ORCID,Eisa M. H.5

Affiliation:

1. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China

2. UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa

3. NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan

4. School of Materials Science & Engineering, Northwestern Polytechnical University, Xi’an 710072, China

5. Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia

Abstract

One important application of polymer/graphene nanocomposites is in membrane technology. In this context, promising polymer/graphene nanocomposites have been developed and applied in the production of high-performance membranes. This review basically highlights the designs, properties, and use of polymer/graphene nanocomposite membranes in the field of gas separation and purification. Various polymer matrices (polysulfone, poly(dimethylsiloxane), poly(methyl methacrylate), polyimide, etc.), have been reinforced with graphene to develop nanocomposite membranes. Various facile strategies, such as solution casting, phase separation, infiltration, self-assembly, etc., have been employed in the design of gas separation polymer/graphene nanocomposite membranes. The inclusion of graphene in polymeric membranes affects their morphology, physical properties, gas permeability, selectivity, and separation processes. Furthermore, the final membrane properties are affected by the nanofiller content, modification, dispersion, and processing conditions. Moreover, the development of polymer/graphene nanofibrous membranes has introduced novelty in the field of gas separation membranes. These high-performance membranes have the potential to overcome challenges arising from gas separation conditions. Hence, this overview provides up-to-date coverage of advances in polymer/graphene nanocomposite membranes, especially for gas separation applications. The separation processes of polymer/graphene nanocomposite membranes (in parting gases) are dependent upon variations in the structural design and processing techniques used. Current challenges and future opportunities related to polymer/graphene nanocomposite membranes are also discussed.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3