Incorporation of Functionalized Halloysite Nanotubes (HNTs) into Thin-Film Nanocomposite (TFN) Nanofiltration Membranes for Water Softening

Author:

Atashgar Amirsajad1,Emadzadeh Daryoush1,Akbari Somaye2,Kruczek Boguslaw1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada

2. Textile Engineering Department, Amirkabir University of Technology, 424 Hafez Ave., Tehran P.O. Box 15875-4413, Iran

Abstract

Incorporating nanoparticles (NPs) into the selective layer of thin-film composite (TFC) membranes is a common approach to improve the performance of the resulting thin-film nanocomposite (TFN) membranes. The main challenge in this approach is the leaching out of NPs during membrane operation. Halloysite nanotubes (HNTs) modified with the first generation of poly(amidoamine) (PAMAM) dendrimers (G1) have shown excellent stability in the PA layer of TFN reverse-osmosis (RO) membranes. This study explores, for the first time, using these NPs to improve the properties of TFN nanofiltration (NF) membranes. Membrane performance was evaluated in a cross-flow nanofiltration (NF) system using 3000 ppm aqueous solutions of MgCl2, Na2SO4 and NaCl, respectively, as feed at 10 bar and ambient temperature. All membranes showed high rejection of Na2SO4 (around 97–98%) and low NaCl rejection, with the corresponding water fluxes greater than 100 L m−2 h−1. The rejection of MgCl2 (ranging from 82 to 90%) was less than that for Na2SO4. However, our values are much greater than those reported in the literature for other TFN membranes. The remarkable rejection of MgCl2 is attributed to positively charged HNT-G1 nanoparticles incorporated in the selective polyamide (PA) layer of the TFN membranes.

Funder

Natural Science and Engineering Research Council

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3