A Study on Biofouling and Cleaning of Anion Exchange Membranes for Reverse Electrodialysis

Author:

Tiago Gonçalo,Cristóvão Maria Beatriz,Marques Ana PaulaORCID,Huertas RosaORCID,Merino-Garcia IvanORCID,Pereira Vanessa Jorge,Crespo João Goulão,Velizarov SvetlozarORCID

Abstract

This study covers the modification, (bio)fouling characterization, use, and cleaning of commercial heterogeneous anion exchange membranes (AEMs) to evaluate their feasibility for reverse electrodialysis (RED) applications. A surface modification with poly (acrylic) acid resulted in an improved monovalent perm-selectivity (decreased sulfate membrane transport rate). Moreover, we evaluated the (bio)fouling potential of the membrane using sodium dodecyl sulfate (SDS), sodium dodecyl benzenesulfonate (SDBS), and Aeromonas hydrophila as model organic foulants and a biofoulant, respectively. A detailed characterization of the AEMs (water contact angle, ion exchange capacity (IEC), scanning electron microscopy (SEM), cyclic voltammetry (CV), and Fourier Transform Infrared (FTIR) spectra) was carried out, verifying that the presence of such foulants reduces IEC and the maximum current obtained by CV. However, only SDS and SDBS affected the contact angle values. Cleaning of the biofouled membranes using a sodium hypochlorite aqueous solution allows for (partially) recovering their initial properties. Furthermore, this work includes a fouling characterization using real surface and sea water matrixes, confirming the presence of several types of fouling microorganisms in natural streams. A lower adhesion of microorganisms (measured in terms of total bacteria counts) was observed for the modified membranes compared to the unmodified ones. Finally, we propose a cleaning strategy to mitigate biofouling in AEMs that could be easily applied in RED systems for an enhanced long-term process performance.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3