Identification of Denatured Biological Tissues Based on Compressed Sensing and Improved Multiscale Dispersion Entropy during HIFU Treatment

Author:

Liu Bei,Wang Runmin,Peng Ziqi,Qin Lingjie

Abstract

Identification of denatured biological tissue is crucial to high-intensity focused ultrasound (HIFU) treatment, which can monitor HIFU treatment and improve treatment efficiency. In this paper, a novel method based on compressed sensing (CS) and improved multiscale dispersion entropy (IMDE) is proposed to evaluate the complexity of ultrasonic scattered echo signals during HIFU treatment. In the analysis of CS, the method of orthogonal matching pursuit (OMP) is employed to reconstruct the denoised signal. CS-OMP can denoise the ultrasonic scattered echo signal effectively. Comparing with traditional multiscale dispersion entropy (MDE), IMDE improves the coarse-grained process in the multiscale analysis, which improves the stability of MDE. In the analysis of simulated signals, the entropy value of the IMDE method has less fluctuation compared with MDE, indicating that the IMDE method has better stability. In addition, MDE and IMDE are applied to the 300 cases of ultrasonic scattered echo signals after denoising (including 150 cases of normal tissues and 150 cases of denatured tissues). The experimental results show that the MDE and IMDE values of denatured tissues are higher than normal tissues. Both the MDE and IMDE method can be used to identify whether biological tissue is denatured. However, the multiscale entropy curve of IMDE is smoother and more stable than MDE. The interclass distance of IMDE is greater than MDE, and the intraclass distance of IMDE is less than MDE at different scale factors. This indicates that IMDE can better distinguish normal tissues and denatured tissues to obtain more accurate clinical diagnosis during HIFU treatment.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3