Abstract
Recognition of biological tissue denaturation is a vital work in high-intensity focused ultrasound (HIFU) therapy. Multiscale permutation entropy (MPE) is a nonlinear signal processing method for feature extraction, widely applied to the recognition of biological tissue denaturation. However, the typical MPE cannot derive a stable entropy due to intensity information loss during the coarse-graining process. For this problem, an improved multiscale permutation entropy (IMPE) is proposed in this work. IMPE is obtained through refining and reconstructing MPE. Compared with MPE, the IMPE overcomes the deficiency of amplitude information loss due to the coarse-graining process when computing signal complexity. Through the simulation of calculating MPE and IMPE from white Gaussian noise, it is found that the entropy derived by IMPE is more stable than that derived by MPE. The processing method based on IMPE feature extraction is applied to the experimental ultrasonic scattered echo signals in HIFU treatment. Support vector machine and Gustafson–Kessel fuzzy clustering based on MPE and IMPE feature extraction are also used for biological tissue denaturation classification and recognition. The results calculated from the different combination algorithms show that the recognition of biological tissue denaturation based on IMPE-GK clustering is more reliable with the accuracy of 95.5%.
Funder
Natural Science Youth Foundation of Hunan Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献