Recognition of Biological Tissue Denaturation Based on Improved Multiscale Permutation Entropy and GK Fuzzy Clustering

Author:

Peng Ziqi,Zhang XianORCID,Cao Jing,Liu Bei

Abstract

Recognition of biological tissue denaturation is a vital work in high-intensity focused ultrasound (HIFU) therapy. Multiscale permutation entropy (MPE) is a nonlinear signal processing method for feature extraction, widely applied to the recognition of biological tissue denaturation. However, the typical MPE cannot derive a stable entropy due to intensity information loss during the coarse-graining process. For this problem, an improved multiscale permutation entropy (IMPE) is proposed in this work. IMPE is obtained through refining and reconstructing MPE. Compared with MPE, the IMPE overcomes the deficiency of amplitude information loss due to the coarse-graining process when computing signal complexity. Through the simulation of calculating MPE and IMPE from white Gaussian noise, it is found that the entropy derived by IMPE is more stable than that derived by MPE. The processing method based on IMPE feature extraction is applied to the experimental ultrasonic scattered echo signals in HIFU treatment. Support vector machine and Gustafson–Kessel fuzzy clustering based on MPE and IMPE feature extraction are also used for biological tissue denaturation classification and recognition. The results calculated from the different combination algorithms show that the recognition of biological tissue denaturation based on IMPE-GK clustering is more reliable with the accuracy of 95.5%.

Funder

Natural Science Youth Foundation of Hunan Province

Publisher

MDPI AG

Subject

Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3