An Efficient Gait Abnormality Detection Method Based on Classification

Author:

Jani Darshan,Varadarajan VijayakumarORCID,Parmar Rushirajsinh,Bohara Mohammed Husain,Garg DweepnaORCID,Ganatra Amit,Kotecha KetanORCID

Abstract

In the study of human mobility, gait analysis is a well-recognized assessment methodology. Despite its widespread use, doubts exist about its clinical utility, i.e., its potential to influence the diagnostic-therapeutic practice. Gait analysis evaluates the walking pattern (normal/abnormal) based on the gait cycle. Based on the analysis obtained, various applications can be developed in the medical, security, sports, and fitness domain to improve overall outcomes. Wearable sensors provide a convenient, efficient, and low-cost approach to gather data, while machine learning methods provide high accuracy gait feature extraction for analysis. The problem is to identify gait abnormalities and if present, subsequently identify the locations of impairments that lead to the change in gait pattern of the individual. Proper physiotherapy treatment can be provided once the location/landmark of the impairment is known correctly. In this paper, classification of multiple anatomical regions and their combination on a large scale highly imbalanced dataset is carried out. We focus on identifying 27 different locations of injury and formulate it as a multi-class classification approach. The advantage of this method is the convenience and simplicity as compared to previous methods. In our work, a benchmark is set to identify the gait disorders caused by accidental impairments at multiple anatomical regions using the GaitRec dataset. In our work, machine learning models are trained and tested on the GaitRec dataset, which provides Ground Reaction Force (GRF) data, to analyze an individual’s gait and further classify the gait abnormality (if present) at the specific lower-region portion of the body. The design and implementation of machine learning models are carried out to detect and classify the gait patterns between healthy controls and gait disorders. Finally, the efficacy of the proposed approach is showcased using various qualitative accuracy metrics. The achieved test accuracy is 96% and an F1 score of 95% is obtained in classifying various gait disorders on unseen test samples. The paper concludes by stating how machine learning models can help to detect gait abnormalities along with directions of future work.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Reference32 articles.

1. A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods

2. Human gait classification after lower limb fracture using artificial neural networks and principal component analysis;Lozano-Ortiz,2010

3. Parkinson's disease classification using gait analysis via deterministic learning

4. Feature extraction via KPCA for classification of gait patterns

5. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms;Alaqtash,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3