Predicting Gait Parameters of Leg Movement with sEMG and Accelerometer Using CatBoost Machine Learning

Author:

Sharma Alok Kumar1ORCID,Liu Shing-Hong1ORCID,Zhu Xin2ORCID,Chen Wenxi2ORCID

Affiliation:

1. Department of Computer Science and Information Engineering, Chaoyang University of Technology, 168, Jifeng E. Rd., Wufeng District, Taichung City 413310, Taiwan

2. Division of Information Systems, School of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu City 965-8580, Fukushima, Japan

Abstract

This study aims to evaluate leg movement by integrating gait analysis with surface electromyography (sEMG) and accelerometer (ACC) data from the lower limbs. We employed a wireless, self-made, and multi-channel measurement system in combination with commercial GaitUp Physilog® 5 shoe-worn inertial sensors to record the walking patterns and muscle activations of 17 participants. This approach generated a comprehensive dataset comprising 1452 samples. To accurately predict gait parameters, a machine learning model was developed using features extracted from the sEMG signals of thigh and calf muscles, and ACCs from both legs. The study utilized evaluation metrics including accuracy (R2), Pearson correlation coefficient (PCC), root mean squared error (RMSE), mean absolute percentage error (MAPE), mean squared error (MSE), and mean absolute error (MAE) to evaluate the performance of the proposed model. The results highlighted the superiority of the CatBoost model over alternatives like XGBoost and Decision Trees. The CatBoost’s average PCCs for 17 temporospatial gait parameters of the left and right legs are 0.878 ± 0.169 and 0.921 ± 0.047, respectively, with MSE of 7.65, RMSE of 1.48, MAE of 1.00, MAPE of 0.03, and Accuracy (R2-Score) of 0.91. This research marks a significant advancement by providing a more comprehensive method for detecting and analyzing gait statuses.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3