A Two-Step Method for Dynamic Parameter Identification of Indy7 Collaborative Robot Manipulator

Author:

Tadese MeseretORCID,Pico NabihORCID,Seo SungwonORCID,Moon HyungpilORCID

Abstract

Accurate dynamic model is critical for collaborative robots to achieve satisfactory performance in model-based control or other applications such as dynamic simulation and external torque estimation. Such dynamic models are frequently restricted to identifying important system parameters and compensating for nonlinear terms. Friction, as a primary nonlinear element in robotics, has a significant impact on model accuracy. In this paper, a reliable dynamic friction model, which incorporates the influence of temperature fluctuation on the robot joint friction, is utilized to increase the accuracy of identified dynamic parameters. First, robot joint friction is investigated. Extensive test series are performed in the full velocity operating range at temperatures ranging from 19 °C to 51 °C to investigate friction dependency on joint module temperature. Then, dynamic parameter identification is performed using an inverse dynamics identification model and weighted least squares regression constrained to the feasible space, guaranteeing the optimal solution. Using the identified friction model parameters, the friction torque is computed for measured robot joint velocity and temperature. Friction torque is subtracted from the measured torque, and a non-friction torque is used to identify dynamic parameters. Finally, the proposed notion is validated experimentally on the Indy7 collaborative robot manipulator, and the results show that the dynamic model with parameters identified using the proposed method outperforms the dynamic model with parameters identified using the conventional method in tracking measured torque, with a relative improvement of up to 70.37%.

Funder

Institute of Information & communication Technology Planning & Evaluation (IITP) grant funded by the Korean Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3