Recurrent Neural Network-Based Temperature Control System Weight Pruning Based on Nonlinear Reconstruction Error

Author:

Liu Yuan,Kawaguchi TakahiroORCID,Xu SongORCID,Hashimoto Seiji

Abstract

Recurrent Neural Networks (RNNs) have been widely applied in various fields. However, in real-world application, because most devices like mobile phones are limited to the storage capacity when processing real-time information, an over-parameterized model always slows down the system speed and is not suitable to be employed. In our proposed temperature control system, the RNN-based control model processes the real-time temperature signals. It is necessary to compress the trained model with acceptable loss of control performance for further implementation in the actual controller when the system resource is limited. Inspired by the layer-wise neuron pruning method, in this paper, we apply the nonlinear reconstruction error (NRE) guided layer-wise weight pruning method on the RNN-based temperature control system. The control system is established based on MATLAB/Simulink. In order to compress the model size to save the memory capacity of temperature controller devices, we first prove the validity of the proposed reference-model (ref-model) guided RNN model for real-time online data processing on an actual temperature object; relative experiments are implemented based on a digital signal processor. On this basis, we then verified the NRE guided layer-wise weight pruning method on the well-trained temperature control model. Compared with the classical pruning method, experiment results indicate that the pruned control model based on NRE guided layer-wise weight pruning can effectively achieve the high accuracy at targeted sparsity of the network.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3