α-Alkylation of Aliphatic Ketones with Alcohols: Base Type as an Influential Descriptor

Author:

Mane Rasika1ORCID,Hui Li1,Centeno-Pedrazo Ander12,Goguet Alexandre1ORCID,Artioli Nancy13ORCID,Manyar Haresh1

Affiliation:

1. School of Chemistry and Chemical Engineering, Queen’s University Belfast, David-Keir Building, Stranmillis Road, Belfast BT9 5AG, UK

2. Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain

3. Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze, 43, 25123 Brescia, Italy

Abstract

Current global challenges associated with energy security and climate emergency, caused by the combustion of fossil fuels (e.g., jet fuel and diesel), necessitate the accelerated development and deployment of sustainable fuels derived from renewable biomass-based chemical feedstocks. This study focuses on the production of long-chain (straight and branched) ketones by direct α-alkylation of short chain ketones using both homogenous and solid base catalysts in water. Thus, produced long-chain ketones are fuel precursors and can subsequently be hydrogenated to long-chain alkanes suitable for blending in aviation and liquid transportation fuels. Herein, we report a thorough investigation of the catalytic activity of Pd in combination with, (i) homogenous and solid base additives; (ii) screening of different supports using NaOH as a base additive, and (iii) a comparative study of the Ni and Pd metals supported on layered double oxides (LDOs) in α-alkylation of 2-butanone with 1-propanol as an exemplar process. Among these systems, 5%Pd/BaSO4 with NaOH as a base showed the best results, giving 94% 2-butanone conversion and 84% selectivity to alkylated ketones. These results demonstrated that both metal and base sites are necessary for the selective conversion of 2-butanone to alkylated ketones. Additionally, amongst the solid base additives, Pd/C with 5% Ba/hydrotalcite showed the best result with 51% 2-butanone conversion and 36% selectivity to the alkylated ketones. Further, the screening of heterogenous acid-base catalysts 2.5%Ni/Ba1.2Mg3Al1 exhibited an adequate catalytic activity (21%) and ketone selectivity (47%).

Funder

Leverhulme Trust

EPSRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3