Toward net-zero sustainable aviation fuel with wet waste–derived volatile fatty acids

Author:

Huq Nabila A.ORCID,Hafenstine Glenn R.ORCID,Huo XiangchenORCID,Nguyen HannahORCID,Tifft Stephen M.ORCID,Conklin Davis R.,Stück Daniela,Stunkel Jim,Yang ZhibinORCID,Heyne Joshua S.ORCID,Wiatrowski Matthew R.ORCID,Zhang YiminORCID,Tao LingORCID,Zhu JunqingORCID,McEnally Charles S.ORCID,Christensen Earl D.ORCID,Hays CameronORCID,Van Allsburg Kurt M.ORCID,Unocic Kinga A.ORCID,Meyer Harry M.,Abdullah ZiaORCID,Vardon Derek R.ORCID

Abstract

With the increasing demand for net-zero sustainable aviation fuels (SAF), new conversion technologies are needed to process waste feedstocks and meet carbon reduction and cost targets. Wet waste is a low-cost, prevalent feedstock with the energy potential to displace over 20% of US jet fuel consumption; however, its complexity and high moisture typically relegates its use to methane production from anaerobic digestion. To overcome this, methanogenesis can be arrested during fermentation to instead produce C2 to C8 volatile fatty acids (VFA) for catalytic upgrading to SAF. Here, we evaluate the catalytic conversion of food waste–derived VFAs to produce n-paraffin SAF for near-term use as a 10 vol% blend for ASTM “Fast Track” qualification and produce a highly branched, isoparaffin VFA-SAF to increase the renewable blend limit. VFA ketonization models assessed the carbon chain length distributions suitable for each VFA-SAF conversion pathway, and food waste–derived VFA ketonization was demonstrated for >100 h of time on stream at approximately theoretical yield. Fuel property blending models and experimental testing determined normal paraffin VFA-SAF meets 10 vol% fuel specifications for “Fast Track.” Synergistic blending with isoparaffin VFA-SAF increased the blend limit to 70 vol% by addressing flashpoint and viscosity constraints, with sooting 34% lower than fossil jet. Techno-economic analysis evaluated the major catalytic process cost-drivers, determining the minimum fuel selling price as a function of VFA production costs. Life cycle analysis determined that if food waste is diverted from landfills to avoid methane emissions, VFA-SAF could enable up to 165% reduction in greenhouse gas emissions relative to fossil jet.

Funder

U.S. Department of Energy

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference76 articles.

1. J. Holladay , Z. Abdullah , J. Heyne , “Sustainable aviation fuel: Review of technical pathways” (DOE/EE-2041 8292, USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B) (Bioenergy Technologies Office Corporate), DOE EERE, 2020).

2. ICAO , Assembly Resolutions in Force. https://www.icao.int/Meetings/GLADs-2015/Documents/A38-18.pdf. Accessed 1 March 2021.

3. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018;Lee;Atmos. Environ. (1994),2021

4. ICAO , Resolutions Adopted by the Assembly: Provisional Edition. 38th Session, Montreal, Canada. September 24 - October 13 (2013).

5. L. Zhang , T. L. Butler , B. Yang , Recent Trends, Opportunities and Challenges of Sustainable Aviation Fuel (Green Energy to Sustainability, 2020), pp. 85–110.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3