Intelligent Algorithms Enable Photocatalyst Design and Performance Prediction

Author:

Wang Shifa1ORCID,Mo Peilin1,Li Dengfeng2,Syed Asad3ORCID

Affiliation:

1. School of Electronic and Information Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404000, China

2. School of Science, Chongqing University of Posts and Telecommunications, Nan’an District, Chongqing 400065, China

3. Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

Photocatalysts have made great contributions to the degradation of pollutants to achieve environmental purification. The traditional method of developing new photocatalysts is to design and perform a large number of experiments to continuously try to obtain efficient photocatalysts that can degrade pollutants, which is time-consuming, costly, and does not necessarily achieve the best performance of the photocatalyst. The rapid development of photocatalysis has been accelerated by the rapid development of artificial intelligence. Intelligent algorithms can be utilized to design photocatalysts and predict photocatalytic performance, resulting in a reduction in development time and the cost of new catalysts. In this paper, the intelligent algorithms for photocatalyst design and photocatalytic performance prediction are reviewed, especially the artificial neural network model and the model optimized by an intelligent algorithm. A detailed discussion is given on the advantages and disadvantages of the neural network model, as well as its application in photocatalysis optimized by intelligent algorithms. The use of intelligent algorithms in photocatalysis is challenging and long term due to the lack of suitable neural network models for predicting the photocatalytic performance of photocatalysts. The prediction of photocatalytic performance of photocatalysts can be aided by the combination of various intelligent optimization algorithms and neural network models, but it is only useful in the early stages. Intelligent algorithms can be used to design photocatalysts and predict their photocatalytic performance, which is a promising technology.

Funder

NSAF joint Foundation of China

Science and Technology Research Program of Chongqing Education Commission of China

Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area

Chongqing Three Gorges University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3