The Intrinsic Relationship between Photoluminescence and Photocatalysis of MMoO4/MWO4 (M = Mg, Ca, Sr and Ba) Heterojunctions: Heterojunction Construction, Mechanism Insight and Development Tendency

Author:

Zhang Man1,Veerabhadrappa Jagadeesha Angadi2,Shaikh Shoyebmohamad Fattemohamad3ORCID,Kumar Ashok4ORCID

Affiliation:

1. School of Electronic Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China

2. Department of Physics, P.C. Jabin Science College, Hubballi 580031, India

3. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

4. Chitkara Centre for Research and Development, Chitkara University, Atal Nagar 174103, India

Abstract

The migration behavior of electron and hole pairs determines both photoluminescence and photocatalytic activity, which are two distinct properties of semiconductor materials. The photoluminescence and photocatalytic activity of semiconductor materials also exhibit strong method-dependent behavior under the influence of synthesis methods. In this review, the synthesis methods of MMoO4, MWO4 and MMoO4/MWO4 (M = Mg, Ca, Sr and Ba) heterojunction composites and their photoluminescence and photocatalytic activities are reviewed for the first time. The effects of different M ions on the photoluminescence and photocatalytic activity of MMoO4/MWO4 heterojunction composites are also reviewed. There is also a discussion about the intrinsic correlation mechanism between photoluminescence and photocatalytic activity. Different M ions result in different coordination environments in MMoO4/MWO4 heterojunction composites, which leads to different photoluminescence and photocatalytic mechanisms of different MMoO4/MWO4 heterojunction composites. This review provides theoretical reference and technical guidance for future research on MMoO4/MWO4 heterojunction composites.

Funder

the Jiangsu Provincial Education Science Planning Project

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3