Affiliation:
1. Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
2. School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
3. School of Mechanical and Power Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
Abstract
Carbon nitride MXene exhibits good metal conductivity, high photothermal conversion, carrier mobility, and high exposure of active sites, which makes it a promising co-catalyst for photothermal synergistic transformation of CO2. In this paper, Ti3CN/TiO2 heterojunction was constructed in situ using Ti3CN as TiO2 precursor to investigate the performance of Ti3CN MXene in photothermal synergistic transformation of CO2, and then the monolayer structure was utilized to enhance the interfacial charge transfer and improve the photothermal catalytic activity of Ti3CN. The catalysts were characterized by SEM, XRD, XPS, and UV-Vis DRS, and it was found the heterojunction constructed by monolayer MXene had a narrower bandgap and a higher carrier generation mobility, which, combined with the catalytic activity test, proved the single monolayer Ti3CN MXene had better photothermal synergistic conversion efficiency of CO2, and the heterojunction yield was 11.36 μmol·g−1·h−1 after layering, compared with that before layering (9.41%), which was 1.2 times higher than that before layering (9.41 μmol·g−1·h−1).
Funder
National Natural Science Foundation of China
Graduate Research and Innovation Foundation of Chongqing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献