TiO2/Zeolite Composites for SMX Degradation under UV Irradiation

Author:

Mergenbayeva Saule1ORCID,Abitayev Zhanibek1,Batyrbayeva Milana1ORCID,Vakros John2ORCID,Mantzavinos Dionissios2ORCID,Atabaev Timur Sh.3ORCID,Poulopoulos Stavros G.1ORCID

Affiliation:

1. Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan

2. Department of Chemical Engineering, University of Patras, University Campus, Caratheodory 1, GR-26504 Patras, Greece

3. Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

Sulfamethoxazole (SMX) is a common antibiotic that is considered an emerging pollutant of water bodies, as it is toxic for various aquatic species. TiO2-based photocatalysis is a promising method for SMX degradation in water. In this work, TiO2/zeolite (Z-45 loaded with TiO2 labeled as TZ and ZSM-5 loaded with TiO2 labeled as TZSM) composites were prepared by mechanical mixing and liquid impregnation methods, and the photocatalytic performance of these composites (200 mg·L−1) was investigated toward the degradation of SMX (30 mg·L−1) in water under UV light (365 nm). The pseudo-first-order reaction rate constant of the TZSM1450 composite was 0.501 min−1, which was 2.08 times higher than that of TiO2 (k = 0.241 min−1). Complete SMX degradation was observed in 10 min using the UV/TZSM1450 system. The mineralization ability in terms of total organic carbon (TOC) removal was also assessed for all of the prepared composites. The results showed that 65% and 67% of SMX could be mineralized within 120 min of photocatalytic reaction by TZSM2600 and TZSM1450, respectively. The presence of Cl− and CO32− anions inhibited the degradation of SMX, while the presence of NO3− had almost no effect on the degradation efficiency of the UV/TZSM1450 system. The electrical energy per order estimated for the prepared composites was in the range of 68.53–946.48 kWh m−3 order−1. The results obtained revealed that the TZSM1450 composite shows promising potential as a photocatalyst for both the degradation and mineralization of SMX.

Funder

Ministry of Science and Higher Education of Kazakhstan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3