Mathematical Modeling of the Phytoplankton Populations Geographic Dynamics for Possible Scenarios of Changes in the Azov Sea Hydrological Regime

Author:

Sukhinov Alexander,Belova Yulia,Chistyakov Alexander,Beskopylny AlexeyORCID,Meskhi Besarion

Abstract

Increased influence of abiotic and anthropogenic factors on the ecological state of coastal systems leads to uncontrollable changes in the overall ecosystem. This paper considers the crucial problem of studying the effect of an increase in the water’s salinity in the Azov Sea and the Taganrog Bay on hydrobiological processes. The main aim of the research is the diagnostic and predictive modeling of the geographic dynamics of the general phytoplankton populations. A mathematical model that describes the dynamics of three types of phytoplankton is proposed, considering the influence of salinity and nutrients on algae development. Discretization is carried out based on a linear combination of Upwind Leapfrog difference schemes and a central difference scheme, which makes it possible to increase the accuracy of solving the biological kinetics problem at large values of the grid Péclet number (Peh > 2). A software package has been developed that implements interrelated models of hydrodynamics and biogeochemical cycles. A modified alternating-triangular method was used to solve large-dimensional systems of linear algebraic equations (SLAE). Based on the scenario approach, several numerical experiments were carried out to simulate the dynamics of the main species of phytoplankton populations at different levels of water salinity in coastal systems. It is shown that with an increase in the salinity of waters, the habitats of phytoplankton populations shift, and marine species invasively replace freshwater species of algae.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

1. Abnormal salinization in the Taganrog estuary and the Don delta;Matishov;Sci. South Russ.,2016

2. Mix and match: how climate selects phytoplankton

3. Ideas of evolutionary ecology in models of aquatic ecological systems;Ilyichev;Water Resour.,1993

4. Expert system “Lakes of Karelia”. 2. Classification of lakes;Menshutkin;Water Resour.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3