Abstract
The article considers a three-dimensional mathematical model of population dynamics based on a system of non-stationary parabolic advection-diffusion-reaction equations with lower derivatives describing the advective motion of the aquatic environment and non-linear source functions. In contrast to the previous authors’ works devoted to the description of this model and its numerical implementation, this article presents the results of an analytical study of the initial-boundary value problem corresponding to this model. For these purposes, the original initial-boundary value problem is linearized on a single time grid—for all nonlinear sources, their final spatial distributions for the previous time step are used. As a result, a chain of initial-boundary value problems is obtained, connected by initial—final data at each step of the time grid. For this chain of linearized problems, the existence and uniqueness of the solution of the initial-boundary value problem for the system of partial differential equations in the Hilbert space were researched. Numerical experiments were performed for model problems of the main types of phytoplankton populations in coastal systems under the influence of dynamically changing biotic and abiotic factors, the results of which are consistent with real physical experiments. The developed model, including the proposed model of biological kinetics, allows for the study of the productive and destructive processes of the shallow water body biocenosis to assess the state of the processes of reproduction of valuable and commercial fish participating in the food chain with selected species of summer phytoplankton.
Funder
Russian Science Foundation
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献