Blue Light Induced Edible Mushroom (Lentinula edodes) Proteomic Analysis

Author:

Park Youn JinORCID,Jang Myoung Jun

Abstract

Blue light is an important environmental factor that induces mushroom growth and morphological changes. In this study, after confirming the morphological difference between Lentinula edodes (LE) under blue light condition (BL) and lightless condition (LL), the increase and decrease in LE protein and the expression of RNA of each protein were confirmed under each condition. LE specimens grown in BL and LL were identified by 253 spots in BL through 2D electrophoresis and LC-MSMS analysis, and 22 types of proteins were identified. It was confirmed that 14 types of proteins showed reduced expression in BL compared to LL. On the other hand, eight kinds of proteins with increased expression in blue light compared to LL were identified. As a result of confirming the difference from the expression pattern in 2D electrophoresis through Quantitative Real-Time PCR, it was confirmed that the expression pattern of the two proteins showed a difference. Therefore, this study will be a key study on the changes in mushroom morphology induced by blue light and the proteins that induce it.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference24 articles.

1. Antioxidative activity of the extracts from browned oak mushroom (Lentinus edodes) with unmarketable quality;Kang;Korean J. Food Sci. Technol.,2004

2. Studies on the extracts preparation of Korean shiitake mushroom (Lentinus edodes);Chang;Korean J. Food Sci. Technol.,1990

3. Light-Induced Carotenogenesis in Streptomyces coelicolor A3(2): Identification of an Extracytoplasmic Function Sigma Factor That Directs Photodependent Transcription of the Carotenoid Biosynthesis Gene Cluster

4. Photobiology in the Zygomycota: Multiple photoreceptor genes for complex responses to light

5. PHOTOTROPISM OF THE Phycomyces SPORANGIOPHORE: A COMPARISON WITH HIGHER PLANTS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3