Congruence Amidst Discordance between Sequence and Protein-Content Based Phylogenies of Fungi

Author:

Xiao GuohuaORCID,Tang Guirong,Wang ChengshuORCID

Abstract

Amid the genomic data explosion, phylogenomic analysis has resolved the tree of life of different organisms, including fungi. Genome-wide clustering has also been conducted based on gene content data that can lighten the issue of the unequal evolutionary rate of genes. In this study, using different fungal species as models, we performed phylogenomic and protein-content (PC)-based clustering analysis. The obtained sequence tree reflects the phylogenetic trajectory of examined fungal species. However, 15 PC-based trees constructed from the Pfam matrices of the whole genomes, four protein families, and ten subcellular locations largely failed to resolve the speciation relationship of cross-phylum fungal species. However, lifestyle and taxonomic associations were more or less evident between closely related fungal species from PC-based trees. Pairwise congruence tests indicated that a varied level of congruent or discordant relationships were observed between sequence- and PC-based trees, and among PC-based trees. It was intriguing to find that a few protein family and subcellular PC-based trees were more topologically similar to the phylogenomic tree than was the whole genome PC-based phylogeny. In particular, a most significant level of congruence was observed between sequence- and cell wall PC-based trees. Cophylogenetic analysis conducted in this study may benefit the prediction of the magnitude of evolutionary conservation, interactive associations, or networking between different family or subcellular proteins.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3