Abstract
Sustainability and energy prices make the use of energy obtained from renewable sources on an urban scale and for isolated local facilities necessary for municipal authorities. Moreover, when the demand of energy is at night, as for street lighting installations, the use of accumulative systems is necessary, which means a major drawback due to a short lifetime expectancy and high cost. The use of batteries can require more than 70% of the budget of these lighting systems and has a critical impact in the project. The problem to solve is finding different renewable energy sources that can produce energy throughout the day, especially during the night, at the same time at which it is consumed. As one of the competences of municipal authorities is water supply networks, this paper analyzes the use of energy recovery turbines within these installations as an alternative to photovoltaic generators. To study the viability and effectiveness of this alternative, the water flows available in the network of a medium-size municipality were monitored and analyzed in depth to assess the amount of recoverable energy. In addition, an energy recovery turbine (ERT) station was set up, installing a bypass around one of the pressure-reducing valves (PRV) of the installation where energy is dissipated without practical use. The results obtained imply that the system proposed has economical and technical viability, is reliable and guarantees full service in all the seasons’ conditions. Moreover, the needs of the energy storage capacity are much lower (~8%) than with solar panels.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference60 articles.
1. The European Union
2. From smart energy community to smart energy municipalities: Literature review, agendas and pathways
3. Strengthening and Implementing the Global Response;De Coninck,2018
4. Clean Energy for all Europeans Packagehttps://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献