Synthesis, Optical, and Structural Studies of Iron Sulphide Nanoparticles and Iron Sulphide Hydroxyethyl Cellulose Nanocomposites from Bis-(Dithiocarbamato)Iron(II) Single-Source Precursors

Author:

Paca Athandwe,Ajibade PeterORCID

Abstract

In this study, Fe(II) complexes of phenyldithiocarbamate, dimethyldithiocarbamate and imidazolyldithiocarbamate were used as single-source precursors to prepare iron sulphide nanoparticles by thermolysis in oleic acid/octadecylamine (ODA) at 180 °C. The nanoparticles were dispersed into hydroxyethyl cellulose (HEC) to prepare iron sulphide/HEC nanocomposites. Ultraviolet-Visible (UV-Vis), Photoluminescence (PL), Fourier Transform Infrared (FTIR), powder X-ray diffraction (pXRD), high-resolution transmission electron microscopy (HRTEM), Field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDS) were used to characterize the iron sulphide nanoparticles and corresponding HEC nanocomposites. The absorption spectra studies revealed that the nanoparticles were blue shifted due to quantum confinement and the optical band gaps of the nanoparticles are 4.85 eV for FeS1, 4.36 eV for FeS2, and 4.77 eV for FeS3. The emission maxima are red-shifted and broader for the nanoparticles prepared from phenyldithiocarbamate. Rod-like and spherically shaped iron sulphide particles were observed from the HRTEM images. The crystallite sizes from the HRTEM images are 23.90–38.89 nm for FeS1, 4.50–10.50 nm for FeS2, and 6.05–6.19 nm for FeS3 iron sulphide nanoparticles, respectively. pXRD diffraction patterns confirmed that FeS1 is in the pyrrhotite-4M crystalline phase, FeS2 is in the pyrrhotite phase, and FeS3 is in the troilite phase of iron sulphide. The phases of the iron sulphide nanoparticles indicate that the nature of the precursor complex affects the obtained crystalline phase. FTIR spectra studies confirmed the incorporation of the nanoparticles in the HEC matrix by the slight shift of the O–H and C–O bonds and the intense peaks on the nanoparticles. FESEM images of the iron sulphide nanoparticles showed flake-like or leaf-like morphologies with some hollow spheres. The EDS confirmed the formation of iron sulphide nanoparticles by showing the peaks of Fe and S.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3